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SUMMARY

This paper describes and compares two vorticity-based integral approaches for the solution of the
incompressible Navier–Stokes equations. Either a Lagrangian vortex particle method or an Eulerian
�nite volume scheme is implemented to solve the vorticity transport equation with a vorticity boundary
condition. The Biot–Savart integral is used to compute the velocity �eld from a vorticity distribution
over a �uid domain. The vorticity boundary condition is improved by the use of an iteration scheme
connected with the well-established panel method. In the early stages of development of �ows around an
impulsively started circular cylinder, and past an impulsively started foil with varying angles of attack,
the computational results obtained by the Lagrangian vortex method are compared with those obtained
by the Eulerian �nite volume method. The comparison is performed separately for the pressure �elds as
well. The results obtained by the two methods are in good agreement, and give a better understanding
of the vorticity-based methods. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Lagrangian vortex method is based on the discretization of the vorticity �eld: its main
idea is the application of the particle method in vortex �ow. This ‘gridless method’ is very
attractive for numerical simulations of viscous �ow around a body with complex geometry.
It is then possible to avoid the nonlinear convection term of the vorticity transport equation,
which involves di�culties associated with numerical di�usion for its discretization in grid-
based methods. In fact, the Lagrangian vortex method has been used in earlier research for
the computation of high-resolution simulations of viscous �ows with solid boundaries: fast
algorithms using multipole expansions [1], treatment of viscous di�usion using the particle
strength exchange scheme (refer to ‘PSE scheme’ below) [2], and enforcement of the no-
slip boundary condition [3, 4]. A thorough review of the foundation of the method and an
extensive account of its previous applications may be found in several studies [5–10].
In the case of the vorticity-velocity formulation, there are some advantages over the prim-

itive variable formulation. In externally attached �ow problems, where the viscous region
occupies only the boundary layer and wake, a computational region for vorticity evolution
can be con�ned to this region of the entire �ow �eld [11]. Furthermore, the use of the vorticity
�eld may be suitable in the study of certain features of established vortical �ows. One of the
most di�cult problems encountered in the vorticity-velocity formulation is the introduction
of the proper value of vorticity or vorticity �ux at the solid surface [12]. The �uid around
a solid body may presumably appear at any instant in time to have a spurious slip velocity
component on the surface of the solid body. This apparent slip velocity must be reduced to
zero by the production of a proper quantity of vorticity at the surface. This vorticity then
enters and is distributed throughout the �uid by convection and di�usion. This distribution
of the vorticity is governed by the vorticity transport equation. Wu et al. [13] presented a
systematic theoretical analysis for these dynamic boundary conditions. They proposed a fully
decoupled scheme based on fractional step methods (in which the vorticity transport equation
is separated into convection and di�usion equations) applicable for high Reynolds numbers.
In the work of Koumoutsakos and Leonard [14], a fractional two-step algorithm is employed
in a similar way to the work of Wu et al. In the �rst step, vortex particles are convected
during a time interval with velocities computed via the Biot–Savart integral with a smoothed
kernel. Their strengths are modi�ed based on the PSE. In the second step, a spurious slip
velocity, which is computed on the surface of a body at the end of the �rst step, is related
to a vorticity �ux generating from the solid wall in the �uid.
In a previous study [15], we proposed a similar concept based on an integro-di�erential

formulation for the solution of unsteady incompressible Navier–Stokes equations. The distinc-
tive feature was the use of an integral approach for obtaining the velocity and pressure �elds,
in conjunction with a �nite volume scheme for solving the vorticity transport equation.
The present work revisits an integral approach to the vorticity-velocity-pressure formula-

tion and gives a comparative study of numerical solutions obtained by two vorticity-based
formulations: an Eulerian �nite volume method and a Lagrangian vortex method. The integral
approaches for obtaining the velocity and pressure �elds are expected to re�ect more e�ec-
tively the global coupling among vorticity, velocity and pressure when imposing the boundary
condition for vorticity at a solid surface. A mathematical identity for a vector or scalar �eld is
used to de�ne �eld values of a quantity of interest, which involves an integral of singularities
distributed over the surface and throughout the �eld. This concept has been well established
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for potential �ow analysis and has been extensively used to solve viscous �ow problems (see
Reference [16] for general description). In this regard, we introduce a mixed scheme as a
combination of the existing vortex methods and the panel method [17, 18]. The velocity �eld
of the external �ow is based on the Helmholtz decomposition: u= u∞ + uw + ∇�, where
u∞ is an undisturbed velocity, and uw represents a rotational �eld. The contribution of the
velocity component of the potential �ow ∇� is not only physically natural, but also helpful in
considering the kinematics of �ow: e.g. the no-penetration condition and the divergence-free
constraint of vorticity. The present work deals with the pressure calculation as well, which
has not been treated in most vorticity-based methods.
In the context of the numerical implementation, the no-slip boundary condition is enforced

by assigning the vorticity �ux at the solid surface. The vorticity �ux at the surface is assigned
as its time-averaged value during a small time interval (�t). In this stage, we propose an
iterative process to introduce a proper amount of the time-averaged vorticity �ux in order to
ensure the no-slip condition. Also, in order to complete the PSE scheme of the vortex method
in the presence of boundaries, we use an ‘image particle layer’ inside the boundaries. The
image particle layer re�ects an overall e�ect of all vortex particles in the �eld on the presence
of the boundaries [19].
For a comparative study, we take an impulsively started circular cylinder problem and an

impulsively started NACA0021 foil with varying angles of attack, in which certain special
features are apparent, notably concerning the vorticity distribution on the surfaces. Our nu-
merical results could be judged by a comparison with the existing analytical solution provided
by Bar-Lev and Yang [20], in the case of the cylinder, and with the results of the previous
work using the �nite volume method [15].

2. BASIC FORMULATION

The stress tensor for incompressible Newtonian �uids can be expressed as

�ij= − p�ij + �
(
@ui
@xj

+
@uj
@xi

)
(1)

and the stress vector, with the normal vector n, is written as

�= − pn+ ��× n+ 2�Ou · n (2)

where u;� and p are the velocity, the vorticity and the pressure, respectively. The last term
of the equation gives no net contribution to �uid surface forces. Thus, the Navier–Stokes
equations can be represented, ignoring any external body forces, as

−� du
dt
=Op+O× �� (3)

where � is viscosity and � density (set to �=1 for simplicity). Equation (3) is of a Helmholtz
decomposition form, p and �� being a pair of the potential forces.
The governing equations for the unsteady �ow of a Newtonian incompressible �uid are

written as

∇ · u=0 (4)
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�=∇ × u (5)

@�
@t
+ u · ∇�=� · ∇u+ �∇2� (6)

∇2
(
p
�
+
1
2
u2
)
=∇ · (u × �) (7)

The set of Equations (5)–(7) is one of the basic di�erential vorticity-velocity formulations.
Note that a Poisson equation for the velocity, ∇2u= − ∇ × �, is often used to replace
Equation (5). Some research on vortex methods deals with the vorticity-streamfunction for-
mulation instead.
According to the mathematical vector identity, an equivalent integral formulation of

Equation (5) is written, with use of Equation (4), as

u=
∫
S
[(n · u)∇G + (n × u)× ∇G] dS +

∫
V
�× ∇G dV (8)

where n is the unit normal pointing into the �uid at the boundary S (C in 2-dimensions) of a
�uid domain V (S in 2-dimensions) and ∇ denotes the di�erential operator with respect to the
variable of integration ^. Here, G is the fundamental solution of the Laplace equation for an
unbounded �uid domain, which is de�ned by G=1=4�r in 3-dimensions and G= −1=2� ln r
in 2-dimensions, where r is the distance between a �eld point x and an integration point
^. The �rst integral of Equation (8) represents the contribution from the undisturbed onset
�ows (u∞) and the potential �ows (O�). The second integral, known as the Biot–Savart
law, represents the disturbance velocity �eld (u!) induced by a vorticity �eld. Using the
Biot–Savart law in computing the velocity �eld guarantees the enforcement of the boundary
condition for the velocity at in�nity.
Similarly, an integral formulation of Equation (7) can be written as

H =
∫
S

[
H
@G
@n

− @H
@n
G
]
dS +

∫
V

∇ · (u × �)G dV (9)

Here, the pressure p is related to the total pressure H (the static plus the dynamic pressure)
de�ned by

H =
p− p∞
�

+
1
2
(u2 − u2∞) (10)

where the constants p∞ and u∞ are the reference pressure and velocity at in�nity (or at a
reference point), respectively. With this de�nition, the boundary condition at in�nity for H is
expressed by H → 0 as |x| → ∞. Thus, the contribution due to H at in�nity is not considered
when solving Equation (9).
The system of Equations (6), (8) and (9) are solved in the �uid domain with boundary

conditions for velocity, vorticity and pressure on the surface (CB) of a solid body. The no-slip
velocity condition states that the velocity of the �uid (u) is equal to the velocity of the body
(UB) at the surface points (xB) of the body:

u(xB; t)=UB on CB
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The boundary vorticity �ux at the solid body is

�
@�
@n
=
(
n × dUB

dt
+ n × ∇p

�

)
on CB (11)

This essential boundary condition for the vorticity at the solid surface can be derived
by taking the cross product of the Navier–Stokes equations (Equation (3)) with n, under
the velocity adherence condition. This condition corresponds to the force equilibrium in the
direction tangent to the solid surface. This represents an explicit expression of the process
of vorticity production described qualitatively by Lighthill [21]. This quantity of the vorticity
�ux di�uses into the �uid from the body surface. The above expression applies to t=0+ as
well and is, therefore, applicable immediately after a solid body is accelerated impulsively.
Similarly, the scalar product of the Navier–Stokes equations (Equation (3)) with n gives an
expression for @H=@n as:

@H
@n
= − n · @u

@t
+ n · (u × �)− n · (∇ × ��) on CB (12)

From Equations (11) and (12), we can see that the boundary conditions for the vorticity
and the pressure are coupled. A more rigorous and extensive analysis of these pressure and
vorticity conditions for the two- or three-dimensional incompressible or compressible �ows
was given by Wu and Wu [22].
In the previous study [15], the authors presented a numerical method using an integral

approach for obtaining the velocity and pressure �elds, in conjunction with a �nite volume
method for solving the vorticity transport equation.
In a �nite volume discretization applied to Equation (6), integrating the vorticity transport

equation over an arbitrary but stationary cell, and then applying the divergence theorem, yields
an integral form. In this integral form of the vorticity transport equation, the di�usive �ux term
was approximated in a similar fashion to the central di�erence scheme. For the convection
term, the second-order total variation diminishing (TVD) scheme with a �ux limiter was used.
Time was advanced by an explicit forward Euler time-stepping scheme with time interval �t.
The velocity �eld was calculated by the direct evaluation of the Biot–Savart integral, Equation
(8) from the transformation of the involved integrands. Applying the Gauss integral theorem
for the transformed integrals reduces the surface integrals to the line integrals, being rendered
in terms of the closed form of the line integrals along the boundary of an individual cell.
For the pressure �elds, Equation (9) was solved using a panel method approximation. For
the boundary conditions with global coupling of vorticity, velocity and pressure, the iteration
scheme was used. See References [15, 19, 23] for more details.

3. LAGRANGIAN VORTEX METHOD

In the case of two-dimensional �ows, a Lagrangian form of Equation (6) is represented as

D!
Dt

= �∇2! (13)
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where ! is the scalar plane component of the vorticity vector (� ≡ !k). The vorticity �eld
in two-dimensional �ows is represented by N scalar-valued particles:

!(x; t)=
N∑
i=1
’i(x − xi)�i (14)

Each particle is characterized by its position, xi(t), and its strength, �i(t), i.e. its circulation,
�i=

∫
Si
! dS ≈ !iSi, with Si the area of �uid associated with the particle i. The regularized

particle representation of the vorticity �eld has been used by various researchers [6, 24, 25].
The distribution functions ’i associated with each particle are de�ned by

’i(x)=
1
�2i
’
( |x|
�i

)
(15)

where �i is the smoothing parameter denoting the blob (particle) size. In the present study, we
choose Gaussian smoothing as the distribution function for its physically appealing properties:

’(�)=
1
2�
exp
(

−�
2

2

)
(16)

3.1. Velocity calculation

Vortex particle positions xi(t) are governed by the equation,

dxi
dt
= u(xi ; t)= u∞ +O�+ u! (17)

The velocity at any position x in Equation (17) in the Lagrangian description can be calculated
by using Equations (8) and (14). The �rst term of the closed integral term in Equation (8)
may be calculated by the well-established panel method in a similar fashion to the analysis
of the potential �ow. According to Green’s scalar identity, the potential � at arbitrary points
on the body surface is written as

1
2
�(x)=

∮
�(y)n(y) ·OG(x − y) + n(y) ·O�(y)G(x − y) dly (18)

Assume that a density distribution of singularity strength on each panel at the boundary
(subdivided into M) is uniform. The integral equation of Equation (18) is discretized as

1
2
�i(x)=

M∑
j=1
Aij�j +

M∑
j=1
Bij�j

where n ·O�j= − n · (−UB + u∞ + u!)=�j; Aij=
∫
Cj
n(y) ·OG dly; Bij=

∫
Cj
G dly. Since the

source strength �j is a known value, the line integrals for each panel, Aij, Bij can be solved
algebraically [23]. While O� on the body surface can be approximated in the sense of the
�nite di�erence of �i, O� at �eld points can be computed as

O�(x)=
1
2�

∮
S

[
�(y)

(
n(y)
r2

− 2 n(y) · r
r4

r
)
+ n(y)O�(y)

r
r2

]
dSy (19)
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where r=x−y. The irrotational part of the velocity �eld (O�) obtained by the panel method
compensates the kinematics of particles in such a manner that the no-penetration condition
(e.g. u · n=UB · n) applies (see References [17, 18] for panel method).
The second term of the Biot–Savart integral in Equation (8) may be discretized by the

Lagrangian vorticity �eld, Equation (14) as

u!(x; t)= − 1
2�

N∑
i=1
K� × �i(xi)k (20)

where R= |x − xi|;K=(x − xi)=|x − xi|2;K�=K{1 − exp(−|R|2=2�2)}. In order to obtain the
spurious slip velocity (Vs) on the body surface, a �eld point x is replaced by xB on the
body panel. We compute Equation (20) using a fast algorithm [1] with an operation count of
O(N log (N )) rather than O(N 2).

3.2. Viscous di�usion

The treatment of the di�usion equation (Equation (13)) is based on a technique related to
the PSE scheme introduced by Degond and Mas-Gallic [2]. The Laplacian operator ∇2 is
approximated by an integral operator, which is discretized over the particles.

�∇2! ≈ 2�
�2

∫
�
	�(|x − y|)(!(y)−!(x)) dy (21)

Then, the evolution equation for the particle strengths becomes

d�i
dt
=
2�
�2

N∑
j=1
(Si�j − Sj�i)	�(xi − xj) (22)

where 	�(xi − xj)=1=(2��2) exp(−|xi − xj|2=2�2) being the same as Equation (16). Herein, �
is constant for all particles. If Equation (22) is used for wall-bounded computations, particles
close to the wall are not completely surrounded by other particles. Consequently, a spurious
vorticity �ux appears at the wall while the total vorticity is conserved [4, 10].
We use an image particle layer to complete the PSE for particles close to the wall. Solid

walls are approximated as discretized panels. The images are placed along a layer inside the
body close to the panel, as shown in Figure 1. The extended vorticity of the image layer adds
to the vorticity on the body,

�(x)=
N∑
i=1
�i’i(x − xi) +

M∑
m=1
�∗
m’

∗
m(x − x∗

m) x∈ @D (23)

where the superscript ‘∗’ refers to quantities of images. Then the vorticity �ux on the body
is expressed as

@�
@n
=

N∑
i=1
�i
@’i
@n
(x − xi) +

M∑
m=1
�∗
m
@’∗

m

@n
(x − x∗

m) x∈ @D (24)

where n is the normal vector of the particle x and the zero-vorticity-�ux condition means
@�=@n=0 at the body surface. The normal derivative of the smoothing function is
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Particles

Image Layer

Body Surface

Figure 1. Image particle layer to enforce the zero-vorticity-�ux condition
at the body surface in PSE scheme.

found to be

@’i(r)
@n

= − 1
2��4

exp
(

− r2

2�2

)
(r · n) (25)

Denoting the radius of the image blob by �∗, Equation (24) is expressed as

@�(xp)
@n

=
1

2��∗4
M∑
m=1
�∗
m exp

(
− r∗2

2�∗2

)
(r∗ · n) + 1

2��4
N∑
i=1
�i exp

(
− r2

2�2

)
(r · n)=0 (26)

where r=xp − xi and r∗=xp − xm. With the image layer, Equation (21) is replaced by
d�i
dt

1
Si
=
2�
�2

N∑
j=1

[
�j
Sj

− �i
Si

]
	�(|xi − xj|) Sj + 2��2

M∑
m=1

[
�∗
m

Sm
− �i
Si

]
	� (|xi − xm|) Sm (27)

where Sm= �∗2 for the image. This technique is insensitive to the local shape of a body. That
is, because one image layer in the body is used, it may be suitable in the case of a thin body,
e.g. foils with cusped trailing edges.
A vorticity �ux (�(@!=@n)) may be determined on the boundary in such a way that the

no-slip condition is satis�ed. Wu et al. [13] introduced a relation between a vorticity �ux
and spurious slip velocity (Vs). If a vorticity �ux is constant over a small interval of time
(�t), the spurious slip velocity (Vs) that would appear at the end of the time step can be
regarded as the coupling term corresponding to the tangential gradient of the surface pressure
in Equation (11). The newly computed Vs, which can be obtained by the Biot–Savart integral,
can then be used to absorb the coupling term and consequently to update a vorticity �ux:(

�
@!
@n

)(k+1)
=
(
�
@!
@n

)(k)
+
(
Vs
�t

)(k)
(28)

Here, the superscript notation refers to the iterative step. The iteration continues until the
no-slip condition is satis�ed, i.e. until Vs reduces to a value within a preset allowance.
Equation (28) indicates the total �ux to be emitted into the �ow for the di�usion process
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during a time �t. This elegant decoupled scheme was introduced by Wu et al. [13], through
which we can e�ciently recover the global coupling between the vorticity and pressure bound-
ary condition instead of the implementation of the fully coupled schemes.
The vorticity �ux is distributed to neighbouring particles by discretizing the Green’s inte-

gral for the inhomogeneous Neumann problem corresponding to the di�usion equation. For
di�usion within the schemes to work properly, the spatial distribution of the particles must
remain as uniform as possible. To re-mesh the distorted particles, we overlaid a uniform rect-
angular grid. This is necessary in order to accurately interpolate the current vorticity �eld
onto the new grid of initially uniformly spaced particle location that replaces the distorted
particle locations (as suggested by Ploumhans and Winckelmans [4]).

3.3. Pressure equation

Once the vorticity and the velocity �elds are updated, the integral equation for the total
pressure may be solved. Basically, the process for calculating the pressure in a Lagrangian
frame is similar to one in an Eulerian frame. Substituting Equation (12) for @H=@n into
Equation (12) yields the limiting form for H as the �eld point approaches the surface points
(xB) of a solid body:

1
2
H +

1
2�

∫
CB
H
@(ln r)
@n

dl=− 1
2�

∫
CB

[
n · @u
@t

− n · (u × �) + n · (∇ × ��)
]
ln r dl

+
1
2�

∫
S
∇ · (u × �) ln r dS (29)

where the integrals over CB are evaluated on the surface of a body in the sense of the Cauchy
principal value integral. Using the vector operation for the integrand of the surface integral in
Equation (29), namely, ∇ · (u×�) ln r=∇ · (u×� ln r)− (u×�) · ∇ ln r and applying the
divergence integral theorem to the resultant expression, yield a Fredholm integral equation of
the second kind for H :

1
2
H +

1
2�

∫
CB
H
@(ln r)
@n

dl=− 1
2�

∫
CB

[
n · @u
@t
+ n · (∇ × ��)

]
ln r dl

− 1
2�

∫
S
(u × �) · ∇(ln r) dS

Furthermore, if we assume that the body will be either �xed, or impulsively started, as in the
test problem, the equation reduces to a simpler form:

1
2
H +

1
2�

∫
CB
H
@(ln r)
@n

dl= − 1
2�

∫
CB
�
@!B
@s

ln r dl− 1
2�

∫
S
(u × �) · ∇(ln r) dS (30)

The two integrals over CB in Equation (30) may be replaced by the sum of the individual
integral form for the contribution of each straight-line body panel. This can then be solved
using the panel method in a way similar to that used in potential �ow analysis (as mentioned
in Section 3.1). The surface integral term on the right-hand side of Equation (30) may be
solved with distorted vorticity particles, unlike the well-aligned cell elements in an Eulerian
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description. The discretization of Equation (30) (except the last surface integral term) is
expressed as

1
2
Hi +

1
2�

M∑
j=1
Hj
∫
j
∇ ln r dlj =− 1

2�

M∑
j=1

{n · (∇ × ��)j}
∫
j
ln r dlj

− 1
2�

∫
S
(u × �) · ∇ ln r ds (31)

Body vorticities on the body panels may be calculated from the distribution function of
Equation (14). The second term on the right-hand side of Equation (31) (source-like strength,
n · ∇ × ��) is calculated by numerically di�erentiating the body vorticities in the tangential
direction of the body surface panel. With the vorticity �eld of Equation (14), the last integral
term in Equation (31) is discretized as

1
2�

∫
(u × �) · ∇ ln r ds=

1
2�

N∑
i=1
ui × (�ik) · r

|r|2
∫
’i ds

=
1
2�

N∑
i=1

[
(x − xi)uy�i − (y − yi)ux�i

|r|2
] [
1− exp

(
− |r|2
2�2

)]
(32)

3.4. Computational procedure

As shown in Figure 2, the numerical implementation for two-dimensional Lagrangian formu-
lation can be summarized in the following substeps of the solution of the system of governing
equations. The overall procedure is similar to those of Koumoutsakos et al. [3] and Ploumhans
et al. [4]. In the present method, however, the irrotational (potential �eld) part of the velocity
�eld is calculated by using the well-established panel method and the iterative process is used
for more physically suitable creation of vorticity �ux in order to ensure the no-slip condition,
which was taken on the previous vorticity-based method in the Eulerian description [15]. A
typical time step, �t, of the Lagrangian vortex method is divided into two substeps.

(i) The local velocity (u= u! +∇�+ u∞) is computed as follows: u! calculated by the
Biot–Savart integral (Equation (20)), ∇� calculated by the panel method (Equations
(18) and (19)). Then, the velocity is integrated with a second-order Adam–Bashforth
scheme (or a second-order Runge–Kutta method immediately after the redistribution
process is applied) to convect the particle. Their strengths are updated with the PSE
scheme
(Equation (27)) that is integrated with an Euler explicit scheme. Algorithmically, this
step is expressed as

xn+1i = xni +�t(
3
2 ui(x

n;�n)− 1
2 ui(x

n−1;�n−1)) (33)

�∗
i =�

n
i +�t

d�i
dt

∣∣∣∣
PSE
(xn;�n) (34)
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Figure 2. Numerical procedure of the Lagrangian vortex method.

(ii) The vorticity �ux(�(@!=@n)) necessary on the body surface to cancel the slip velocity
computed by substep (i), is computed (Equation (20)). However, recalculation of the
slip velocity on the body boundary may reveal that the no-slip condition is not satis�ed.
Vorticity �ux due to the remaining slip velocity is then re-calculated. The iteration
continues until the no-slip condition is satis�ed, i.e. until the spurious slip velocity
reduces to a value within a preset allowance. The vorticity strength corresponds to a
vorticity �ux that must be emitted during a time �t:

�n+1i = �∗
i +�t

d�i
dt

∣∣∣∣
wall
(xn+1;�∗) (35)

The redistribution scheme is applied every few steps (herein every 5–10 time steps) to main-
tain spatial uniformity of the particle distribution. Once the vorticity and velocity are updated
after two substeps are taken, the pressure equation (i.e. Equations (31) and (32)), is solved.

4. SOME COMPARATIVE RESULTS

4.1. Impulsively started cylinder

The time development of an incompressible viscous �ow around an impulsively started cir-
cular cylinder is a classical problem in �uid mechanics. Despite the simplicity of its geom-
etry, the �ow structure is complicated and all possible �ow phenomena occur [26]. In this
section, comparative studies of this problem are performed with the results of the Eulerian
formulation [15] and other researchers’ work, including theoretical [20], and numerical [4, 14]
investigations of the validity of the Lagrangian formulation.
Input parameters for the present comparison are as follows: Re=U∞D=� =550; T = tU∞=D;

�t=0:05, blob size �=0:005, surface panel size d=�=600 ≈ 0:0052. These parameters are
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Table I. Computational parameters used in the impulsively started cylinder problem.

FVM Vortex method

Reynolds number 550 550
Time step, �t 0.01 0.01
Radius 0.5 0.5
Number of surface panels 600 600
Panel size About 0.005 About 0.005
Grid meshes 600× 40 —
Particles — 9000–70 000
Computational domain Diameter × 2:5 No limit
Computational time About 6 h About 8 h
(Pentium IV) (400 time steps) (400 time steps)
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Figure 3. Comparison of the accumulated spurious slip velocity distribution on the
cylinder surface; solid line (−), Lagrangian vortex method (present scheme); dashed

line (−−), Lagrangian vortex method [4].

chosen to satisfy the stability condition ��t=h2 =O(1) for the di�usion term, and to satisfy
the stability conditions of the second-order Adam–Bashforth scheme for the convection term,
and the explicit Euler scheme for time marching. N particles (or blobs) result in the so-called
‘N -body problem’ in the evaluation of the Biot–Savart integral. Therefore, the convection and
di�usion terms are treated with the fast algorithm [1] to reduce computing time. Computational
parameters used for the present comparison are tabulated in Table I.
Figure 3 gives the comparison of vortex sheet strength with the results by Ploumhans and

Winckelmans [4]. The vortex sheet strength (�
) is equivalent to the accumulation of spurious
slip velocity on the body boundary, which is calculated during the iterative process for the
no-slip condition. The results of Ploumhans and Winckelmans are obtained in a manner such
that vortex singularities are distributed on the body surfaces, and the no-slip condition is
conferred to the interior boundary surfaces, which is equivalent to a no-penetration condition.
Figure 3 shows that the distribution of �
 is in good agreement, except for some peak values.
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Figure 4. Ix comparison for the impulsively started cylinder problem (0¡T¡0:25): solid line (−),
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Figure 6. CD comparison for the impulsively started cylinder problem (0¡T¡0:25):
solid line: solid line (−), analytical [20]; N, Lagrangian vortex method (present

scheme); ◦, Lagrangian vortex method [4].

This implies that the iterative process for the body boundary condition imposed in FVM is
also applicable to the vortex particle method.
A comparison is made in Figure 4 of Ix as a function of T = tU∞=D for the x-component of

momentum (I=
∫
� x × � ds), Ix=

∫
� y! d�=

∑
p yp�p, and Figure 4 includes the analytical

solution for early developing �ows (T¡0:25). The numerical and analytical results are in
good agreement. As shown in Figure 5, for a longer time interval, the two numerical methods
give indistinguishable results. The same comparison for the drag coe�cient, CD=Fx= 12�U

2
∞D

with Fx= − � dIx=dt, is shown in Figures 6 and 7. Here, the result obtained by FVM is
included. Figure 6 shows that, of the two methods, the present Lagrangian scheme produces
results somewhat closer to the analytical results.
Figure 8 represents the comparison of the body vorticity between the Eulerian FVM and

the Lagrangian vortex method. The front stagnation point of the cylinder corresponds to the
angular position of �=� measured from the positive x-axis. The body vorticity obtained by
the Lagrangian vortex method is the ‘�ltered’ (smoothed) value. The Lagrangian scheme has
high-frequency noise in the values due to dispersed particles, so the �ltered value is taken
by an inverse Fourier transformation of the 16 �rst modes. The agreement between the two
methods is seen to be quite satisfactory, but with small di�erences at local extrema. It is
observed that, as time progresses, the local peaks of body vorticity become large. These local
peaks occur at the instant the vortical wake behind the cylinder develops.
Figure 9 shows the streamline patterns. It is found that the wake length behind the cylinder

is half the diameter of the cylinder at T =2, and almost the same as the diameter at T =4.
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Figure 8. Body vorticity comparison for the impulsively started cylinder problem, Re=550 at t=0:5,
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At T =2, a secondary vortex is generated at a position of about �=60◦. The results obtained
from the Lagrangian vortex method and the Eulerian FVM are found to be almost identical,
but the Lagrangian scheme produces short wavelength oscillations at regions where there are
few nearby particles.
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Figure 10 presents a comparison of iso-contours of vorticity between the Lagrangian and
Eulerian approaches. The agreement between the two is shown to be very good, except that
the minimum and maximum values of ! di�er slightly.
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Table II. Computational parameters for the impulsively started foil (NACA0021).

Eulerian FVM Lagrangian vortex method

Reynolds number 550 550
Time step, �t 0.01 0.01
Thickness ratio 0.21 0.21
Number of surface panels 408 408
Angle of attack 5◦,10◦ 5◦,10◦

Grid meshes 408× 60 —
Particles — 13 000–40 000
Computational domain Chord × 3 No limit
Computational time About 31 hours About 50 hours
(Pentium IV) (400 time steps) (400 time steps)

Figure 11 shows the pressure contours in the computational domain. The results from the
two methods are almost identical. As time advances, the pressure distributions are rapidly
changed near strong vortical �ow structures. It is seen that a low-pressure region is formed
at the core of the downstream wake.
Figure 12 presents a comparison of pressure coe�cients Cp(= (p − p∞)=�u2∞) on the

body surface at several instants. It is observed that the agreement between these results is
satisfactory. As time progresses, a region with a local peak develops. This is caused by the
generation of the wake or vortex behind the circular cylinder.

4.2. Impulsively started foil with varying angles of attack

We now take the case of the impulsively started NACA0021 with varying angles of attack.
The present image particle layer scheme is suitable for this case. The parameters used in the
calculation are similar to the case of the impulsively started cylinder (see Table II).
The computing time is longer than in the case of the cylinder. The reason may be that

the number of iterations required for canceling the spurious slip velocity and generating the
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vorticity �ux on the body boundary is larger than that in the case of the cylinder problem.
As the angle of attack is higher, the computing time is much longer. We applied the present
scheme to the foil with two angles of attack, 5◦ and 10◦.
Figure 13 shows the streamline patterns, the vorticity contours and pressure contours at

Reynolds number 550 around the foil with angle of attack being 5◦. The two results are
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shown to be in good agreement. In the streamline patterns, the reverse �ows are captured near
the trailing edge of the foil. As observed in the results of the Lagrangian vortex method, the
�elds of velocity and pressure are con�ned to the viscous region around the foil, because we
consider only the �eld where the vorticity evolves and exists. Figure 14 shows the streamline
patterns, the vorticity contours and pressure contours at Reynolds number of 550 at T =4:0
for the angle of attack of 10◦. This shows aspects similar to those of the previous case.
Figures 15 and 16 show the comparison of the drag coe�cients and the lift coe�cients. In
the case of angle of attack 5◦, the results of Lagrangian vortex and Eulerian FVM methods
are nearly identical. On the other hand, in the case of angle of attack 10◦, there is a small
di�erence between the results, especially at about T =3:0. This may be due to the strong
starting vortex. When the angle of attack of the foil is higher, the strength of the starting
vortex is larger. Each scheme may re�ect the evolution of the vorticity on the body in a
di�erent manner. In fact, we only focus on the unsteady �ow simulation at an early stage.
We may expect to obtain the same steady-state characteristics.

5. CONCLUDING REMARKS

This paper proposes a vorticity-based integro-di�erential formulation for the numerical solution
of unsteady incompressible �ows. The integral approach that is a fundamental part of the
present formulation is directly applicable for solving the integral equation for the pressure
�eld as well. The present scheme includes a pressure calculation which is a distinctive feature,
not previously treated in most vorticity-based methods. These aspects have been adapted for
the vorticity-velocity-pressure formulation by an Eulerian description.
For the kinematics of �ow and the physical interpretation of the velocity �eld

(u= uw +∇�+ u∞), a Lagrangian vortex method connected with the panel method has been
presented. An iterative process was used in order to enforce the no-slip condition through the
vorticity �ux at the body boundary. For a thin body, we suggest the use of an image particle
layer for the zero-vorticity-�ux condition on the solid boundary.
By applying the present scheme for the impulsively started cylinder and the impulsively

started NACA0021 foil with angles of attack, we performed comparisons with existing results,
and with the results of an Eulerian FVM.
Although the present work has mainly focused on comparative studies, future work would

address the treatment of turbulence models, the extension of the vortex method to three-
dimensional �ow problems, and the development of e�cient numerical schemes associated
with the solution procedure.
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